Attogram mass sensing based on silicon microbeam resonators
نویسندگان
چکیده
Using doubly-clamped silicon (Si) microbeam resonators, we demonstrate sub-attogram per Hertz (ag/Hz) mass sensitivity, which is extremely high sensitivity achieved by micro-scale MEMS mass sensors. We also characterize unusual buckling phenomena of the resonators. The thin-film based resonator is composed of a Si microbeam surrounded by silicon nitride (SiN) anchors, which significantly improve performance by providing fixation on the microbeam and stabilizing oscillating motion. Here, we introduce two fabrication techniques to further improve the mass sensitivity. First, we minimize surface stress by depositing a sacrificial SiN layer, which prevents damage on the Si microbeam. Second, we modify anchor structure to find optimal design that allows the microbeam to oscillate in quasi-one dimensional mode while achieving high quality factor. Mass loading is conducted by depositing Au/Ti thin films on the local area of the microbeam surface. Using sequential mass loading, we test effects of changing beam dimensions, position of mass loading, and distribution of a metal film on the mass sensitivity. In addition, we demonstrate that microbeams suffer local micro-buckling and global buckling by excessive mass loading, which are induced by two different mechanisms. We also find that the critical buckling length is increased by additional support from the anchors.
منابع مشابه
Fabrication of a nanomechanical mass sensor containing a nanofluidic channel.
Nanomechanical resonators operating in vacuum are capable of detecting and weighing single biomolecules, but their application to the life sciences has been limited by viscous forces that impede their motion in liquid environments. A promising approach to avoid this problem, encapsulating the fluid within a mechanical resonator surrounded by vacuum, has not yet been tried with resonant sensors ...
متن کاملThermally Actuated Low Impedance MEMS Resonators for Mass Sensing Applications
This paper presents high-Q thermally actuated micromechanical resonators suitable for sensory applications under atmospheric pressure. Single crystal silicon resonators with resonance frequencies in the 250 KHz to 1.5MHz range were fabricated using a single-mask fabrication process on SOI substrates. The resonators were operated in a one-port configuration in their in-plane resonance mode with ...
متن کاملFourth-Order Contour Mode ZnO-on-SOI Disk Resonators for Mass Sensing Applications
In this work, we have investigated the design, fabrication and testing of ZnO-on-SOI fourth-order contour mode disk resonators for mass sensing applications. This study aims to unveil the possibility for real-time practical mass sensing applications by using high-Q ZnO-on-SOI contour-mode resonators while taking into account their unique modal characteristics. Through focused ion beam (FIB) dir...
متن کاملFrequency fluctuations in silicon nanoresonators Supplementary Information
Supplementary Figure S1. Complete mapping of datapoints and references of Figure 1 in the main text. 1. Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 301–304 (2012). After annealing 2. Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 7, 301–304 (2012). Before annealing 3. Jensen, K., Kim, K. & Zettl, A. ...
متن کاملOptically induced strong intermodal coupling in mechanical resonators at room temperature
Articles you may be interested in Pressure-sensing based on photothermally coupled operation of micromechanical beam resonator Appl. Study of laser-induced self-oscillations in silicon nanomechanical resonators
متن کامل